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ABSTRACT !Dist specigl
u - The examples published by Klee and Minty in 1972 do not ! b
A
g preclude the existence of a pivot rule which will make the simplex 1

method, at worst, polynomial. In fact, the continuing success of

Dantzig’'s method suggests that such a rule does exist.

A study of known examples shows that a) those which use
"selective" pivot rules require exponentially large coefficients,
and b) none of the examples' pivot rules are typically used in
practice, either because of computational requirements or due to a
lack of even-handed movement through the column set. j

- In all "bad" problems, certain improving columns are entered
i 2m—2 times before other improving columns are entered once. This

is done by making the unused columns "appear" to yield small

objective function improvement. ]
The purpose of this paper is to explain the Klee-Minty and 7
Jeroslow constructions, show how they can be modified to be
pathological with small integral coefficients, and then suggest a
"least entered" pivot rule which forces an improving column to be
entered before any other column is entered for the second time.

This rule seems immune to the "deformed product construction" which

is the essence of all known exponential counterexamples.
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Introduction

The simplex method has been solving linear programs with m
constraints in m to 3m pivots for over twenty years. 1In 1972,
Klee and Minty demonstrated the existence of linear programs with
m inequality constraints in m non-negative variables which require
Zm—l plvots when any improving column may enter and when the

"

standard ''max cj—zj rule is followed. Applying their construction

' .. . m
for the standard rule leads to coefficients in excess of 3 .

In 1973, Jeroslow published a modification of a second Klee
and Minty construction. His modification is pathological for the
"maximum increase" rule. An unrefined application of this construction
also yields exponential coefficients.

Other examples involving large coefficients were subsequently
published by Zadeh [1973] for minimum cost network flow problems,
Avis-Chvatal [1977] for Bland's rule (first positive), Murty ([1978]
and Fathi [1978] for complementary pivot algorithms, and Goldfarb-

Sit [1980] for a "gradient" selection rule. An example due to

Edmonds for shortest path computations is also known [4].

The above examples may be viewed as "“deformed product constructions."

Given a polytope P" requiring = 2™ pivots with a polynomial
number of dimensions, a new polytope Pm+l is constructed by deforming
a product P" x V, where V is some polytope usually of low dimension.

m+1

In the first Klee-Minty construction, P differed from p" by one

dimension and two facets (V has one dimension and two facets). In

sdbeddibotiing,
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the Klee-Minty-Jeroslow construction, Pm+1 differed from P" by
two dimensions and roughly 4k facets, where k 1is some positive

Pm+l

integer. In the network comstructions [16], differed from

Pm

by 2m dimensions and 2m+4 facets.

We show that any linear program with rational coefficients
may be expressed with coefficients 0, 1, -1, and 2, Modifications
of the Klee-Minty and Jeroslow constructions are given with integral
coefficients no greater than four. The Klee-Minty examples are

shown to be equivalent to resource allocation problems with non-
negative coefficients in which all bases have determinants of +1.

In all "bad" examples, the coefficients are chosen so that the

best columns price out moderately, and are not entered until other
columns have been entered exponentially many times. Roughly speaking,

1 ~ P™ x Vm, this means that the simplex

for a deformed product Pm+
method performs a 2" step pivot sequence for P® before entering
any of the new variables associated with V", The pivot sequence
for P" dis then performed again in the reverse order.

Geometrically, the simplex method stays on a lower P" face of
P" x V@ for =~ 2" pivots, then moves through the added v® dimensions
to an "upper" P" face where it spends another " pivots "undoing”
pivots performed on the lower face.

Entering variables from ' early causes a permanent move away
from the lower face, killing the exponential growth.

The following rule forces movements away from faces irrespective
of the level or rate of improvement. It was considered primarily for

theoretical purposes after a thought provoking conversation with Arthur

F. Veinott, Jr.




" bound for the diameters of polytopes from %--

‘Least entered rule: Enter the improving variable which has been

entered least often.

The above rule is easy to implement, and when used in conjunction
with the standard or "max increase” rules speeds up both. It is
unlikely to cycle (the cycle must contain all improving columns).

It is our hope that the rule will prove to have a worst case bound
proportional to m'n, where m 1is the number of rows and n is

che number of columns.* Examples of maximum flow problems requiring
% m'n pivots using this rule will be given in a forthcoming paper.

Other rules similar to the "least entered" rule which have been
suggested [4] are the Least Recently Considered (LRC) rule of
Cunningham and the Least Recently Basic (LRB) rule of E.L. Johnson.
Both methods were apparently designed for shortest path computations
in networks but have obvious extensions to general linear programming
wh;ch would kill the exponential growth of known counterexamples.

Unfortunately, polynomial proofs for the above rules, if they
exist, might be extremely hard, as they would reduce the current best
2d_2(n -d +'%) to a
polynomial in n and d, where n 1s the number of facets and d,

the dimension.

*
This is similar to the old conjecture =(d,n) =~ (d-1)(n-d) +1

of Klee (12] which was proven false by Klee and Minty for the

standard rule.
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The Klee-Minty Construction

The first Klee-Minty construction creates from an n-dimensional
polytope P" with 2n faces requiring 2" pivots when any
improving column may enter a polytope P“+1 with two more faces
requiring 2n+1_1 pivots,

The construction is illustrated in Figure 1. The path of
vertices visited in P" 1s denoted Pg> Pys +-es p2n 1. The first
polytope P1 has two faces (xl.Z o, x1,5 1) and req;ires one pivot.
The second polytope P2 is obtained from P1 by adding two additional
constraints —x1/3 +x, >0 and x1/3 + x, < 1, involving one
additional variable.

It is convenient to think of the pivot sequence for P2 in terms
of the slack variables associated with the various faces. The
initial point Py = (0,0) 1is determined by Sy» 8, basic, 817 8,

non-basic. The sequence Po* Py» Py Py corresponds to entering

-] then s_, and then sz. The variables sz, 8, and s, are

1 3
respectively deleted.
P3 is obtained from P2 by adding two more constraints involving
one additional variable. Note in Figure 1 that the pivot sequence
for P3 is essentially the pivot sequence for P2, plus a movement

from the lower face, followed by the sequence for P2 in the reverse

order. We express this pheomenon in general by writing

>
Pn+1 = §n’ Spntl’ P*. In terms of entering slack variables,
23

P = sls3s2 85 818452'
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X2 81 - - 32 max Xz

S3X (1,13)
(0,0)
3.
J,,———"”“‘::z (0,0,1)
i [ Y i
/’ ‘—”ﬁ
”—”” 86
(0,1,2)3) p=-
¢
X3 max X3
(0'1'1/3) L'“i: ----- P~
‘5‘\s s~~£‘\
“‘\. -f\
e~ S
~“~ \\
s‘\\
(0,1,0) -~ Xz (0,0,0)
Pivot sequences:

No. 2 31 33 32
No.3 515382 S5 515452
No.4 S3S3S, Sg S154S, S; S1S3S, Sg S15452

Figure 1: An example of the Klee-Minty construction




Fooling the Standard Rule

The examples in Figure 1 take one pivot to solve when the
standard max cj—zj rule is employed. To fool this rule, Klee and
Minty scale the variables so that a much larger change in the entering
slack varilable is required to achieve the same objective function
change, or equivalently, to move to the same adjacent vertex.

As an illustration, let Z(si) denote the relative cost factor

for S . If Afi denotes the change in the objective when sy is

entered, then E(si) = Afi/Asi' At Py = (0,0,0) in Figure 1,
E(sl) =1/9, E(sz) = 1/3, and E(ss) = 1. The standard rule would

enter moving from (0,0,0) ¢o (0,0,1), the optimum, in one

SS,

pivot. However, if s_ were replaced by 35/16, it would take a

5

16 unit change in s to move from (0,0,0) to (0,0,1) and

5

5(35) would be 1/16. A similar replacment of s, by 82/4 would

2
cause the standard rule to enter s; and follow the same sequence
as before.

The right hand side of Table 1 gives a scaling which will make

the standard rule exponential. Note that the coefficients grow at

a rate of Am.




% Examples with Small Integral Coefficients
%
%

The large coefficients in expressions like 58/64, or more

t generally, sznlanﬂl, may be eliminated by adding n-1 additional
variables and constraints. For the case 38/64, we replace Sg

by sé with the additional constraints 4sé - sg = 0, 4s§ - sg = 0,
435‘ - sg = 0, sé, sg, Sg'.z 0, as done in Table 1. To construct
P" in this fashion using coefficients no greater than 4, m(m-1)

constraints and non-negative variables must be added.

ARt Mt Rt o shbe o n fonndi i R

It should be noted that such a'toefficient reduction" can always
be performed, but the "reduction" is cleanest when the large
coefficients in each column are multiples of a fixed power of two,

for example,

3.274

_1_274

74

Theorem 1. Let L be a linear program with rational coefficients
whose representation requires a polynomial number of digits. Then L

may be expressed using integral coefficients of 2, 1, -1, and 0

with a polynomial number of variables and constraints.
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Any improving column Standard rule
max x,
x, - 8 = 0 replace
X + s, = 1 slacks by
—xl/3 + x, - 8y = 0 - s3/4
x1/3 + x, + s, =1 54/4
- x2/3 + x4 - s5=0 - 85/16
x2/3 + X, + s, =1 s6/16
- x3/3 + X4 - S7 =0 - S7/64
x3/3 +x, + sg=1 sg/64

Small Coefficients
Replace a quantity like 38/64 by a variable sé, along with

the constraints

| B | B "o oonr o " _ =
4s s o, 458 sg 0, 458 Sg o,

all variables > 0 .

Table 1: Example of the original Klee~Minty construction
(upper left), a scaling of the slacks to fool
the standard rule (upper right), and the addi-
tion of m(m-1l) variables and constraints to

yield integral coefficients < 4 (below).
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Proof. The bi may be made to be 0 or 1 by suitably multiplying
each row. With this change, let dj denote the least common multiple
of the divisors of elements in column j. Then column j may be

written as

Cj %

i

X 413 2
@ :
3 : g
. E

mj ;

where d,, €., @,., +«., a_, are integers. Let Z dfk)zk denote
37731 m] x 3

the binary representation of dj and let

q; = max {llog, 4.}, llog, a,. i}
. T 2 3 z2 1]

Note that d(k) =0 or 1 for every k, j. Define a new variable

k|
X, = x,/d, by adding new variables igk), k=0,1, 2, ..., q.>
h 3773 b i
(E(k) = oK Xx.) and constraints (2 d(k) ;Sk)) -x, =0 and L
3 3 s B ] g
- —(k— £
_x§k) + 2x§k D =0, k=1, ..., qj' Let E a§§)2k be the binary t
representation of aij' Now the term xjaij/dj may be expressed E
as I aig) Egk). All coefficients are 0, +l, or 2. The above t
k
construction requires Z (qj+1) additional variables and constraints. ®

3

10




when applying the simplex method to the above problems, care
=(k)

must be taken to ensure that initial pivots eliminate x variables
and retain xj. If xj is eliminated and replaced by ;;&)

rescaling of variables has occurred which will change relative

s 4

cost factors and may affect the pivot sequence. ;
The following theorem notes some similarities between the Klee-
Minty construction and the "bad" complementary pivot example due to H

Murty, and explains how the Avis-Chvatal example was obtained.

Theorem 2. Let L™ denote the nth problem constructed on the

left side of Table 1, with Spy respectively,

/3t

854-1 replaced by

i-1 .
321/3 s respectively, Syq-1

Then (" fis equivalent to a resource allocation problem with

non-negative integral coefficients, equal objective coefficients, E

and basis matrices whose determinants are 1 or -1,

Proof. Solving the triangular system

11




X 1
X s
1 3
, -3 tx5 -3 0
X s
2 5 =
_-§—+x3 -9 =0
x s
3 7
_3+x4 - 37 0
3 e s e e e e e e e e
; for Xis cees X yields
1%
} s1+s3
X2
. sl+s3+s5
X3 9
. sl+s3+s5+s7
X4 27

Substituting for L

equivalent problem

in the remaining equations produces the




R e

1 LI
maximize 7 (s, + 83+ 8.+ s, + +8, ;)

subject to 8y + 8, =1
231 + 84 + 8, = 3
231 + 233 + S + 8¢ =9
Zsl + 233 + 2s5 + s, + sg = 27

n-1
Zsl + Zs3 + 2s5 + 237 + + sZn-1+ + S9n 3

91.2 0.

The constraint matrix is of the form (L{I) where L 1is a lower triangular
matrix with ones on the diagonal. This gives the result. B
The above problem can yield the same pivot sequence as the nth
scaled problem in Table 1 because all relative cost factors will be
0 or + 1/3n-1 at every vertex (there will be many ties). To
ingure that the same sequence is followed 8y4> respectively, Sp4-1

must be replaced by

S24-1

ki--l

821
A1

» respectively, with k > 3,

in which case the constraint matrix would change but would remain

lower triangular.

o
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An example of Avis and Chvatal, which for m = 3 with a rearranging

of indices is

2
maximize 10 s1 + 1033 + 85

2
subject to 8, + s, = 10
4
2081 s3 + 54 10
200s, + 20s. + s +s, =10° s. >0
1 3 5 6 i~

may be obtained from Table 1 by replacing the 3's by 10's and taking
k= 102.
The following assertion notes that a bounded pathological example

can always be transformed into one with all a bi’ and c, > 0.

i3’ j

Assertion 1. Let L be a linear program with a finite optimal
solution. Then | may be transformed to an equivalent program L'
in which all coefficients are positive (non-negative).

Proof. Affix the constraint in + s = M for sufficiently

m+l
large M. Then add suitable multiples of this constraint to each
row until all coefficients are positive. The objective function will

have a constant term involving -M which may be disregarded. R

14
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Bland's Rule (first improving column)

Table 2 lists the sequence of relative cost factors E(si)
assoclated with the vertices Pg» +++» Py of P3. Notice that the
variables 8oy and 8,4.1 are complementary, i.e., 321'321_1 =0
Y i, as are their relative cost factors E(sZi) . 5(321_1) =0V {i.

The following theorem notes that examples given in Table 1 are
pathological for Bland's Rule. A similar statement can be made for

the forthcoming Jeroslow modification, and for network examples in

[16].

Theorem 3. The examples in Table 1 follow the same pivot sequence

with Bland's rule.

Outline of proof. It suffices to show that the first improving

column prices out best. Let ¢ -~denote the objective function.

For every n, ¢(p0) =0, ¢(p2n_l) = 1, and the jump in ¢ ~between
lower and upper faces is 1/3. Let pi = (pi, ¢(pi)/3) and

pi =(py» 1 - ¢(pi)/3) for 0 < 1 < 2™1. Then the vertex sequence

for Pn+1 is
1 1 1 2 2 2
po’ p19 se ey pzn__1! pzmlv LA pl’ po o
N J \. -7
el N
lower face upper face

For each increase in n, the objective change between successive

points on lower (upper) faces decreases by a factor of three. Because

15
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1 2 3 4 S5 6
0 : o L o £ o
1 0 -3 1 o &£ 0
2 o 3 -5 £ o
3 -3 0 o0 -5 = o
4 35 o o & 0 -3
5 o -3 o L o -
6 o - 0 o -+
7 -3 o - 0 0 - &
Table 2: Relative cost factors associated

with the

vertices Pgr Pys +ecs Pq-

P Py T—




the vertices for Pn+1 are obtained from the vertices for P" by

adding an extra dimension (the objective value), the change in the
entering slack required to move from Py to Py OO the lower

(upper) face remains the same. This implies that relative cost

factors for old slacks are decreased in absolute value by a factor

of three for each increase in n. The new slack variables (with the
highest indices) are scaled to price out worse than the other variables.
This observation and its predecessor imply that the lowest indexed
variables, when profitable, price out best. The exact formula, for
2(321) >0, is E(SZi) = 4/3" (3/4)1, vhich decreases by a factor

of three for each increase in n. B

17




The Maximum Increase Rule

This rule enters the column yielding the maximum objective
increase. A sequence of "bad" polytopes, Pl, cees PP, will be
constructed recursively. Pl is shown at the top of Figure 2.

It has two dimensions, four faces, and requires two pivots starting

from (0,0) when the objective is maximize x The two "“lower

1
faces" are dotted for the purposes of identification.
The second polytope Pz, is four dimensional and appears

below Pl. Pz is a deformed product of Pl with Vl, the two

dimensional polytope shown in the upper right.

T e R

P2 is best appreciated by imagining that one is looking down
at the top of a mountain. The shaded edges of P2 correspond to

1. The dotted edges of PZ

the upper faces of Pl crossed with V
correspond to the bottom faces of Pl crossed with V1 and are
not all shown. Pl corresponds to the two dimensional polytope

determined by (0,0) and points a and b. Figure 2 is essentially

an approximate projection of Pz onto the V1 coordinates, which

are denoted Xq and x4.

Pz was designed so that, starting at (0,0), and maximizing the

Xy oOr "x" coordinate, one first performs the pivot sequence for Pl;

executes geveral pivots involving V1 variables; "reverses" the
sequence for Pl; and ends at (1,0).
In terms of entering slack variables, the forward pivot sequence

Py to Pg shown in Figure 2 may be expressed as




S2 S3. 4 \
(0,0)¢ »1,0) Yo
\
Sy, LS, S5 S10
Initial polytope &
v1
(12, 5/24)
(19.19)
il ATl i A N t\"'--
O '4’ ) \\
(0,0) =m0 ==~ === (1,0)
(-13,0) b (43,0)
P2 = P x V1

Coordinates shown are X3 and X4,
the coordinates of V1.

1 ";\-4-7""\
AR 1
(0,0) = py ¥ pg=1(1,0)

Reverse pivot sequence, Pg t0 pg. min x3, 8 pivots.

Figure 2: A modification of the Klee-Minty-Jeroslow
construction.
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P” is a "reversible" polytupe, in the sense that eight pivots
are also required if one starts at (1,0) and minimizes Xy The
reverse pivot sequence from (1,0) to (0,0) 1is shown at the
bottom of Figure 2.

To insure that the pivot sequence for Pl is performed before
variables in Vl are entered, the difference in x coordinates
between Vg = (0,0) and vy = (1/9, 1/9) is chosen smaller than
the difference in x coordinates between (0,0) and vertex a.

. .y 1
This ensures that pivots involving variables of P are performed

first as long as such pivots are profitable.




Construction of P3

P3 is constructed as a deformed product of Pz X V2. V2

is the same as V1 except that the slopes of the lines through

(- 1/3, 0), (1/2, 5/24) and (1/2, 5/24), (4/3, 0) are decreased
in absolute value by a factor of 4. This effectively squashes the
top half of P3 so that the difference in x coordinates between

*
Yo and vy is 1/45 . Variables of P2 are now more "profitable"

than variables of VZ, so the whole pivot sequence for P2 is

performed before variables of V2 are entered.

Denoting the relevant slacks of V2 corresponding to

1
S50 Sg» Sg» Sgs Sg» Sy In VO by 8145 8195 8195 8145 Sy40 Sy

the forward pivot sequence for P3 in terms of entering slacks is

'8 $115%125%13 \flsz $10%9%8 535, %7 S14
—~ ~"
32

»

In general, P® is constructed as a deformed product of Pn-l
and Vn-l, where Vn-1 is the same as V1 except the lines through
(- 1/3, 0), (1/2, 5/24) and (1/2, 5/24), (4/3, 0) have their slopes

decreased in absolute value by a factor of l/4n_2.

*
vy is determined by the intersection of lines y = x and y = x/16 + 1/48,

22
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Examples with Small Coefficients

2

Constraints with small integral coefficients defining Pl, P
and P3 are shown in Table 3. The system for P* is generated
by taking the system for Pn_1 and adding the constraints determining

-1
v, with X,,-1 TYeplaced by x, .- (x, ./3) for facets on the
left of the line x = 1/2 and «x
2n-1
for facets on the right of x

replaced by x + (x /3)

2n-1 2n-1 2n-3

2n—1.=1j2' This yields the deformation,

or tilting of the product. Note that, aside from a translation of

subscripts, the set of constraints for V2 differs from that for V1
only in the first two inequalities, where a variable xg (representing
16x6) has replaced a variable xz (representing 4x4). This corresponds

to reducing the slope of the top two facets by a factor of four.

Testing the Problems

To run the problems it is recommended that the x variables
be eliminated and replaced by slacks. The starting basis then consists
of those slacks which are positive at the point (0,0,0, ..., 0).
For PZ the starting basis would be S3» 845 895 Sgy Sgs Sy and

the slacks for the bottom two faces of Vl.

23
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Table 3

X7

»”
~N

»
~

X2 %42 %grXg s Xg2Xgs Kg s Xg s Xg

A i

I

+ 3x

SN
(WS

+ 3x

3x

3x

- 3x!

- 3x

24

PN

IA A Ia A A ®

A

3x5 3xg
3xg + 3xg
4x6 - xé
4xé - xg
3x5 + 3x6
3x5 + 3x6
3x5
3x5
3x5 - 3xé
3x5 - 3xé
*s
s
o unrestricted

i~

In In In DA (A n "

In

4

3x

> 2+24+4 = 8 pivots

7

+ Bx;'g 4

"
3x7 + 3x7.$ 1

20 pivots
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